

Benefits & Challenges of Fuel Cell & Plug-in Vehicles

Senate Hydrogen & Fuel Cell Caucus Briefing

June 12, 2009

Robert Wimmer Toyota Motor North America

Issues that Influence Automobile Business

Hybrid is First Step in Addressing Issues

TOYOTA MODELS

Prius *Midsize 5 Door*

LEXUS MODELS

RX450h Luxury SUV

Averaging over 20,000 hybrids sold per month in 2008

GS450h Premium Sport Sedan

Camry Hybrid Midsize 4 Door

Highlander Hybrid Midsize SUV

LS600h Flagship

Savings with Hybrid Technology

* Prius & RX450h Fuel Economy (50 mpg & 30 mpg) - EPA Combined Rating
 Class Average Fuel Economy (25 mpg for mid-size cars & 20mpg for mid-size SUV) - 2008 EPA LDV Trends Report

The Big Picture

ΤΟΥΟΤΑ

Hybrid is a Foundation for Future Technology

• Toyota's Hybrid Synergy Drive is the basis for all next generation electric technologies

Potential of Fuel Cell Vehicles

- Hydrogen-fueled fuel cells have the potential to significantly reduce the environmental impact of the automobile
 - High on-board energy efficiency
 - Zero tailpipe emissions
 - Non-petroleum, diversified fuel sources
 - Potential for low / zero carbon hydrogen

Toyota FCHV Progress

			Present	2015
Vehicle				FCCJ* / DOE Target * Fuel Cell Commercialization Conference of Japan
	Dec. 2002 ~ '02 FCHV (lease model)	Jul. 2005 ~ '05 FCHV (lease model)	'08 FCHV-adv (lease model)	Commercial Solution
Technical Challenges				
1. Cold Start / Driving Capability	OdegC ~	OdegC~	-30degC	
2. Actual Cruising Range	210km	230km	500km or more	
3. FC Stack Durability				/ 15 years or more
4. Cost reduction				

Toyota continues its efforts on FC stack durability and FC system cost reduction, targeting commercialization in 2015.

Demonstrated Cold Start Capability

Yellowknife, Canada

Cold weather performance similar to conventional gasoline vehicles

Increased Efficiency & Range

Demonstrated over 400 mile real-world driving range

Stack Durability

FCHV Cost Reduction

Commercialization Challenges

Government, Energy Suppliers

Car makers

California Infrastructure Concern

By the 2012, the demand for H₂ stations will far exceed supply if station deployment is not accelerated

Toyota's PHEV

Based on the 2010 Prius

- 500 to be leased to commercial fleets beginning late 2009
- Global program (~150 coming to the US)
 - Study customer use patterns in different markets (US, EU, Japan)
 - Explore public charging infrastructure options (Europe)
- Li-Ion batteries
 - Manufactured by Panasonic EV (Joint venture with Toyota)
- Key Objectives:
 - Confirm battery durability in real-world operation
 - Evaluate suitability of PHEVs in various markets

Fuel Savings 101

DOE's Adv Vehicle Testing Activity PHEV Conversion Results

- 120 PHEVs under test
- 480,000 total miles
- 46-49 mpg (cumulative)

- Law of diminishing returns for fuel savings
- Real world FE of OEM PHEVs likely 20 25% better than hybrid

Market Segments for Each Technologies

Status & Challenges

Fuel Cell

- Cost high, but on track to reach commercial introduction targets
- Durability improving with path to reaching targets understood
- Range & cold start resolved
- Power density close with path to targets understood – – –

Infrastructure – technology understood, business case unclear, third party must initially subsidize

PHEV / BEV

- Battery cost high on a usable kW-hr basis. Significant reductions are challenging with Li-Ion
- Durability not proven when meeting cost & size targets
- Power/energy density poor.
 Limited improvements possible
- Cold temp performance poor. Limited improvements possible
- Charging Residential (~50%) and few public stations

Conclusions

- Hybrid is the cornerstone for future Toyota vehicles
- Toyota sees a clear path to commercial introduction of a fuel cell vehicle by 2015
 - Infrastructure is our primary concern
- Initial sales will be modest for all new technologies
- Too early to select a winning technology
 - All require additional development
 - Timing for commercialization is similar
 - All will be needed in the market of the future

Thank You!

Outline

- Issues and fuels
- Hybrids the cornerstone of our strategy
- Evolution of hybrid technology
 - Fuel Cell
 - PHEV
- Benefits and challenges
- Market size
- Conclusions

Fuel Options - ICE

Fuel Options - EV

Fuel Options - Hydrogen

FT-EV Concept

- Urban commuter battery electric vehicle
- Based on Toyota iQ that is on sale in Japan and EU
- Designed to meet the needs of an urban commuter
- 2012 launch
- Over-night charging on 110 volt household power

Benefit Comparison – Petroleum Savings

PHEV/BEV CO₂ Reduction Potential

PEV's ability to reduce CO₂ emissions depends on carbon-intensity of electricity generation

Benefit Comparison – CO₂ Reduction

* PHEV CO₂ value for electric only operation

Limited CO₂ benefit for all technologies without:

- Greening of the electrical grid
- Renewable or nuclear hydrogen

<u>Assumptions</u>

- Those on "Petroleum Savings" slide
- 0.605 kg-C0₂/kWh US grid average
- 0.298 kg-CO₂/kWh CA grid average
- 7.2% Transmission losses
- Electric drive efficiency
- PHEV 3.0 mi/ac-kWh
- BEV 3.5 mi/ac-kWh
- 2800 g C/kg H2 NG Reforming
- 65 mi/kg H₂

Potential Volumes for New Technologies

Potential Volumes for New Technologies

- Convenience (refueling / recharging)
- Price (value & image)
- Real or perceived "range anxiety"

·07 ·08 ·09 ·10

Vehicle deployment dependent on battery development