Macchine Molecolari Naturali, Parte 5: L’energia chimica

Rubrica: Bioingegneria e Biotecnologie

Titolo o argomento: Macchine meccaniche delle dimensioni di molecole

Questo articolo segue da:
Vedi i “link correlati” riportati in basso.

Al fine di facilitare la comprensione dei fondamentali aspetti energetici legati alle macchine molecolari naturali, può tornar utile introdurre (in via del tutto semplificata) concetti cardine quali: ATP, ADP, idrolisi dell’ATP, sintesi dell’ATP, reazione esoergonica ed endoergonica, respirazione cellulare. Ciò semplificherà molto la comprensione dei meccanismi che hanno luogo nelle macchine molecolari naturali quando l’energia viene accumulata e quando viene ceduta. Per i dovuti approfondimenti, invece, si rimanda alle fonti citate al termine di ognuno degli articoli di questa caratteristica rubrica. A tal proposito i nostri ringraziamenti vanno ad Alberto Credi e Vincenzo Balsani per aver condiviso liberamente/gratuitamente pubblicazioni che, a mio avviso, sono a dir poco spettacolari (maggiori info su “1088press.it” l’editoria in open access dell’Università di Bologna).

Che cos’è l’ATP?

ATP sta per Adenosina Trifosfato, si tratta di una molecola centrale nel metabolismo energetico di ogni cellula che costituisce il nostro organismo. L’ATP è costituita da: adenina (che è una base azotata), ribosio (che è uno zucchero pentoso, ovvero costituito da 5 atomi di carbonio) e da 3 gruppi fosfato collegati in serie con il ribosio. I legami dei gruppi fosfato sono particolarmente ricchi di energia, vengono infatti detti legami altamente energetici. Questa energia, al momento della separazione di 1 gruppo fosfato (P), viene rilasciata e, per ogni mole di ATP, si ottengono circa 7,3 Kcal. Solitamente l’energia viene ricavata per rottura di un solo legame fosfato ottenendo così ADP (Adenosina Difosfato), un fosfato (P) e l’energia appena citata. In caso di necessità, però, è possibile rompere anche il legame del secondo fosfato (ma è un caso che non prenderemo in considerazione in questo breve trattato per ragioni di semplicità). La rottura di un legame fosfato dell’ATP, che avviene per idrolisi, produce quindi ADP + P con emissione di Energia.

Image’s copyright: 1088press, Alberto Credi, Vincenzo Balsani

Che cos’è l’ADP?

L’ADP, Adenosina Difosfato, è costituita (ovviamente) da: adenina (base azotata), ribosio (zucchero pentoso) e 2 gruppi fosfato. Qualora vi sia una particolare richiesta energetica, la rottura del legame di un ulteriore gruppo fosfato, trasformerebbe l’ADP in AMP ovvero Adenosina Monofosfato. Per comprendere meglio cosa siano e che ruoli abbiano l’ATP e l’ADP passiamo ai paragrafi successivi sull’idrolisi dell’ATP e sulla sintesi dell’ATP.

Che cos’è l’idrolisi dell’ATP?

L’idrolisi dell’ATP è una reazione che libera energia necessaria al funzionamento delle nanomacchine biologiche (o macchine molecolari naturali). L’energia viene liberata in seguito alla rottura di un legame fosfato dalla molecola di ATP per idrolisi. La rottura di un legame fosfato avviene per idrolisi ovvero la reazione chimica di scissione è possibile grazie all’intervento dell’acqua. Tale reazione produce ADP + P + Energia. Le reazioni che, come questa, emettono energia sono dette reazioni esoergoniche.

ATP → ADP + P + Energia da utilizzare per le funzioni metaboliche

Che cos’è la sintesi dell’ATP?

Quando otteniamo energia tramite l’idrolisi dell’ATP, otteniamo anche delle sostanze di scarto che non sono utili al buon funzionamento della macchina molecolare. La Natura, grazie all’azione del metabolismo e di un enzima detto ATP sintasi (o ATPasi), ricicla e riutilizza l’ADP e il fosfato libero P per produrre nuova ATP (processo rinnovabile). Il compito dell’enzima ATPasi è quello di catalizzare la reazione tra ADP e il fosfato libero P. Questa reazione si dice endoergonica perchè incamera energia (che in questo caso sarà utile ai processi cellulari) proveniente dalla respirazione cellulare. L’ATP sintasi è in realtà un assieme costituito da un enzima, due motori molecolari ed una pompa ionica. Immaginavate ci fosse tutta questa “Meccanica” nelle cellule del vostro corpo?

ADP + P + Energia dalla respirazione cellulare → ATP (reazione endoergonica)

Che cos’è la respirazione cellulare?

C6 H12 O6 (glucosio) + 6O2 → 6CO2 + 6H2O e rilascio di Energia.

Il glucosio reagisce con 6 molecole di ossigeno e restituisce 6 molecole di anidride carbonica, 6 molecole di acqua con emissione di energia. Tale energia serve per trasformare l’ADP in ATP grazie all’addizione di un gruppo fosfato; questo lavoro viene compiuto dall’ATPasi, l’enzima di cui sopra.
Quindi dal binomio cibo + ossigeno ricaviamo energia che serve per formare, indirettamente, molecole di ATP. Indirettamente in quanto la respirazione cellulare non provvede a fornire in maniera diretta l’energia per le funzioni metaboliche ma la fornisce al “macchinario” che se ne occuperà. Nel momento in cui il nostro corpo ha bisogno di energia procede di nuovo alla rottura del legame fosfato e la molecola di ATP torna ad ADP + P + Energia, come in una sorta di accumulatore.

Curiosità

La quantità di ATP accumulata in ogni cellula è molto limitata e può sostenere l’attività metabolica solamente per una frazione di minuto. Ciò implica la necessità di una continua risintetizzazione che converta ADP in ATP al fine di soddisfare i fabbisogni energetici cellulari.

Ogni conversione di energia potenziale è soggetta a perdite, in questo caso non più della metà dell’energia chimica disponibile può essere utilizzata per formare ATP.

Sia le macchine ma­croscopiche (ad esempio il motore a combustione interna detto anche motore endotermico o, ancora, motore a scoppio) che quelle nanometriche funzionano ossidando un com­bustibile e producendo scarti. Quello che cambia fortemente sono principalmente le temperature e le pressioni in gioco nonché le conseguenze della fisica alla scala nanometrica rispetto a quelle del mondo macroscopico (vedi in basso i link correlati).

Movimenti molecolari ordinati

Abbiamo visto nell’articolo precedente “Macchine Molecolari Naturali, parte 4: Conseguenze della fisica alla scala nanometrica” (vedi in basso i link correlati) che per ottenere movimenti molecolari ordinati la Natura sfrutta magistralmente la combinazione di due energie: quella del moto browniano come energia intensa di spinta (quella che nel mondo macroscopico permetterebbe ad un braccio meccanico di sollevare un pesante carico) e quella molto più modesta (ma strategica) dell’ATP fondamentale per “orientare le scosse di terremoto browniane” affinché il movimento nella direzione desiderata, ovvero quella utile a compiere il lavoro richiesto, ad esempio la contrazione di un muscolo, diventi più probabile nel “sisma”.

Pertanto quando funzioni, come ad esempio il battito cardiaco, richiedono la contrazione di tessuti, tale contrazione avverrà letteralmente ad opera di piccolissimi macchinari naturali di dimensioni nanometriche i cui pezzi meccanici costituenti sono vere e proprie molecole (vedremo nello specifico i movimenti lineari, rotatori e di trasformazione nel seguito di questa rubrica).

Nel mondo macroscopico una ruspa aziona i suoi sistemi di spinta oleodinamici grazie all’energia fornita dal motore a combustione interna. Questo funziona a sua volta mediante l’opportuna miscela di una sostanza ad elevato contenuto energetico, il combustibile (idrocarburi), nel comburente (aria). La combustione avviene a temperature e pressioni elevate ma simili condizioni non possono essere adottate all’interno delle macchine molecolari. Quest’ultime infatti operano a temperatura ambiente costante.
Nel suo celebre discorso del 1959, Feyn­man fece osservare: «Un motore a combustione interna di dimensioni molecolari è impossibile. Possono però essere utilizzate reazioni chimiche che liberano energia ‘a freddo’». Ed è proprio quel che accade nelle macchine molecolari naturali in cui le reazioni, che liberano l’energia utile al loro funzionamento (l’idrolisi dell’ATP), avvengono a temperatura e pressione ambiente secondo una moltitudine di stadi successivi che coinvolgono ognuno una piccola quantità di energia.

Continua…

Fonti
Alberto Credi, Vincenzo Balsani, Le macchine molecolari. 1088 press, 2018;
Alberto Credi, professore ordinario di chimica all’Università di Bologna e
ricercatore associato al Consiglio Nazionale delle Ricerche;
Vincenzo Balzani, professore emerito presso l’Università di Bologna.
Grande Dizionario Enciclopedico, UTET;
UTET Scienze Mediche;
Fondamenti di Chimica, UTET;

Link correlati

Non puoi inventare ciò che non esiste
Quanti tipi di forze conosci?

Macchine Molecolari Naturali, Parte 1: Congegni, interruttori, attuatori e motori – Intro
Macchine Molecolari Naturali, Parte 2: Biologia e Nanotecnologia
Macchine Molecolari Naturali, Parte 3: Una fabbrica dentro le cellule
Macchine Molecolari Naturali, Parte 4: Conseguenze della fisica alla scala nanometrica
Macchine Molecolari Naturali, Parte 5: L’energia chimica
Macchine Molecolari Naturali, Parte 6: I movimenti meccanici

Image’s copyright: 1088press, Alberto Credi, Vincenzo Balsani

Illustrazione schematica dell’enzima ATP sintasi che presiede alla sintesi dell’adenosintrifosfato (ATP) a partire da adenosindifosfato, ADP, e fosfato inorganico (Pi). Questo enzima, di dimensioni intorno a 10 nm, è costituito da due motori molecolari rotanti, FO e F1, accoppiati fra loro (a). Nel funzionamento normale dell’enzima, una diversa concentrazione di ioni idrogeno ai due lati della membrana cellulare provoca un flusso degli stessi ioni attraverso l’unità C. Tale flusso mette in moto di rotazione l’unità C come se fosse un mulino. La camma γ, solidale con C, preme in successione sulle unità catalitiche α e β di F1, provocando la formazione dell’ATP a partire dagli ingredienti ADP e fosfato. La vista da sopra dell’enzima (b) evidenzia come la camma γ, ruotando, deforma in sequenza i tre siti in cui avviene la sintesi dell’ATP.