Meccanica Off Limits – Riparazione del finale della catena cinematica della trasmissione del Land Rover Defender 110 2.4 td4 Puma – Parte 1: Intro

Rubrica: Meccanica Off Limits

Titolo o argomento: La mia follia di utilizzo tra l’estremo conservativo dell’endurance e quello agonistico della prestazione pura, breve, intensa…

Negli ultimi giorni ho lavorato così tanto sulla trasmissione del mio personale Defender 110 td4 che alla fine uno dei miei guanti ha accusato un crampo ed è rimasto bloccato : )
Ironia a parte, mi rivolgo ai profani, seppur notevolmente appassionati: Immaginereste mai che solamente sulla parte finale della catena cinematica, che nella trazione integrale si occupa di trasmettere il moto dal motore alle quattro ruote, vi siano decine, centinaia di componenti e un’infinità di nozioni specializzate di cui tener conto per l’esecuzione ottima di un lavoro di riparazione o di manutenzione?

Il solo sistema mozzo, portamozzo, semiasse, giunto, e relativa scatola, che collega una singola ruota al ponte (nella fattispecie quello anteriore) è un assieme costituito da decine di parti ognuna delle quali necessita non solo di attrezzature speciali ma, ancor prima, di decine di nozioni di meccanica avanzata per esser: smontate, assemblate, controllate, regolate, riparate e, persino, analizzate a ritroso per comprendere le cause di una rottura. Quest’ultima può avvenire per utilizzo severo in condizioni gravose o per utilizzo errato, per errata manutenzione, per errato assemblaggio, per impiego di parti scadenti…

Trattasi del “gioco” di costruzioni per noi maschietti più vero, concreto, utilizzabile in prima persona, realmente funzionante, in scala 1:1, nonché tra i più sfiziosi che si possano immaginare. Meccanica pura. Meccanica intensa. Meccanica ovunque. Artigianato, Arti meccaniche, Materiali, Suoni, Odori caratteristici, Senso di solidità, Applicazioni pratiche, trasformazione di una varietà di affascinanti parti meccaniche specializzate in un assieme funzionante, dalle prestazioni strabilianti, da utilizzare in prima persona per lavoro, per passione, o perché no, per entrambi.

Nella serie di articoli che seguiranno tratterò in maniera approfondita, e corredata di numerose foto specialistiche (inedite) scattate nei nostri laboratori, un immenso lavoro di riparazione della parte finale della catena cinematica della trasmissione del Land Rover Defender 110 2.4 td4 Puma. Nello specifico tutto ciò che si incontra dal differenziale anteriore, a partire dal semiasse destro, fino a raggiungere la ruota anteriore destra. Tutto fino all’ultima vite, rondella, paraolio, boccola, cuscinetto, sede, registro, spessore, anello di arresto, flangia, dado, guarnizione, giunto, snodo, testina, coperchio, protezione, mozzo, portamozzo, coppa, piastra, scatola…

Verranno trattate in particolar modo le tematiche inerenti la causa della rottura, le conseguenze della rottura, la mia follia di utilizzo volta a calibrarmi tra l’estremo conservativo dell’endurance e quello agonistico sollecitato della competizione breve ma intensa; come si sono logorate le parti, come sono state rimosse le parti, nonché una breve intro sulla ricostruzione ove i segreti, naturalmente, resteranno segreti.

Continua…

Link correlati

Meccanica Off Limits – Riparazione del finale della catena cinematica della trasmissione del Land Rover Defender 110 2.4 td4 Puma

Parte 1: Intro
Parte 2: Analisi delle cause del guasto
Parte 3: Smontaggio dell’assieme
Parte 4: Smontaggio speciale delle parti danneggiate
Parte 5a: Assemblaggio del nuovo assieme a regola d’arte – Distinta materiali
Parte 5b: Assemblaggio del nuovo assieme a regola d’arte – Boccia di sterzo
Parte 5c: Assemblaggio del nuovo assieme a regola d’arte – Fusello
Parte 5d: Assemblaggio del nuovo assieme a regola d’arte – Mozzo e cuscinetti
Parte 5e: Assemblaggio del nuovo assieme a regola d’arte – Assale
Parte 6: Analisi della componentistica al banco
Parte 7: Conclusioni
Parte 8: Curiosità
Parte 9: Sicurezza

Mirabili architetti della Natura: dalle ragnatele verso la Fisica Quantistica

Rubrica: Fisicamente, Narrativa

Titolo o argomento: Il fascino del mondo microscopico che avvia al concetto di “quanto”

I ragni, mirabili architetti, conoscitori dei fondamenti matematici, protagonisti della fisica e inconsapevoli ispiratori della biomimetica. All’interno dei nostri canoni naturalmente non sono considerati belli ma è indubbio che bello, strabocchevole e affascinante invece “è” quel che con abile maestria sono in grado di realizzare. Struttura, ordine geometrico, eleganza, resistenza, funzionalità. Nel loro mondo microscopico le leggi della fisica iniziano a mutare e dalla fisica classica iniziano quell’alterazione che ci porta verso la fisica quantistica, nel mondo invisibile, quello che pensiamo che non ci sia sol perché non lo vediamo.

Ed ecco allora che ho scattato queste sorprendenti macro di un dettaglio che i miei occhi hanno “svisto”, intuito, supposto, in un breve frangente passando davanti ad una siepe vicino casa. Ingrandimenti di circa 100 volte svelano geometrie e catenarie di gocce i cui diametri seguono salti quantici che con uniformità si ripetono talvolta identicamente, talvolta seguendo codici, sequenze, stati di tensione, organizzazione delle disposizioni, multipli di diametri che portano numeri equilibrati lungo segmenti opportunamente riempiti. Umidità minore si suddivide autonomamente in gocce minute; umidità maggiore porta ad accorpamenti quantici di gocce che si sommano naturalmente generando composizioni di gocce più grandi con alternanze di resti non assorbiti ma capaci di riempire gli spazi rimanenti che portan dispari.

Ed ogni mondo ha dentro un mondo che ha dentro un mondo (come dice la canzone “Safari” di Jovanotti). Ed ogni goccia riflette la medesima incredibile scena capovolta: la stradina del garage di casa mia, il cielo, il buon vecchio Defender, la siepe e me con la reflex ed il cavalletto… E’ superbamente incredibile. Questo è quel che si dice, per gli amanti della Natura, “uno splendido regalo di Natale”.

Buon Natale anche a Voi,
Raffaele : )

Nota

Le foto sono delle macro pure, assolutamente non ritoccate digitalmente in alcun modo. Questo è realmente quello che ci sfugge ogni giorno pur essendo davanti ai nostri occhi i quali, negli ultimi tempi, purtroppo, sono male utilizzati davanti a blandi intrattenimenti mediocri.

Link correlati

I sensi delle piante: intro
Che cos’è un Quanto?

Hacking della trasmissione di potenza di un drone consumer

Rubrica: Hackerare l’hardware dei droni

Titolo o argomento: Modificare la trasmissione di un semplice drone di tipo consumer

I droni di tipo consumer offrono vantaggi non indifferenti quando si desidera approcciare il volo per la prima volta; essi permettono di sostenere costi tutto sommato contenuti, di imparare le tecniche di pilotaggio senza timore di fare danni consistenti e costosi, si riparano facilmente (con spese minime), si modificano facilmente e danno modo di capire se ciò a cui ci si sta avvicinando assomiglia più ad un temporale estivo o ad una passione da coltivare o, perché no, ad una interessante utilità per il lavoro (magari passando gradualmente ad un hardware più sofisticato o, come nel nostro caso, a costruire in autonomia i droni più idonei alle proprie esigenze con affascinanti personalizzazioni che vedremo nei prossimi articoli).

Tuttavia i droni a basso costo presentano un’ovvio svantaggio: la bassa qualità, in special modo dei materiali e dell’assemblaggio. In molti casi, però, esistono semplici metodi per risolvere la maggior parte dei problemi comuni.

Uno di questi è rappresentato dallo slittamento degli ingranaggi della trasmissione. Nei droni economici tali ingranaggi sono montati per interferenza sull’albero di ogni motore elettrico. Questo significa che, per contenere i costi, gli alberi dei motori elettrici non sono dotati di scanalature/calettamenti utili ad assicurare l’accoppiamento albero – pignone (nel caso la trasmissione sia dotata di un riduttore) o direttamente l’elica sull’albero (nel caso la trasmissione sia diretta).

Con le forti accelerazioni, le vibrazioni e l’uso continuativo, accade facilmente che gli ingranaggi si scaldino riducendo l’interferenza iniziale dell’accoppiamento albero – ingranaggio. Di conseguenza l’ingranaggio non riesce a trasmettere il moto dell’albero al resto della trasmissione, andando così in folle. L’elica riduce drasticamente il numero di giri ed il drone perde stabilità (specie nel caso dei semplici quadricotteri). Il giroscopio rileva uno sbilanciamento nell’assetto di volo ma i restanti motori non riescono a bilanciare l’azione se il pignone si è dilatato oltre un certo limite o se, una precedente scaldata, lo ha sfilato non rendendolo più in presa con la corona.

In questo caso ci si deve fermare spesso per aspettare che le temperature si abbassino e, sovente, è necessario smontare parte della scocca per rimettere l’ingranaggio in posizione. Un buon rimedio al problema è rappresentato dall’utilizzo di una goccia di frenafiletti (vedi ad esempio la Loctite 270) da far colare, magari con l’ausilio di un ago, dentro il foro del piccolo pignone prima che questo venga reinserito sull’albero di trasmissione del motore elettrico. Il frenafiletti, a differenza delle normali colle, offre una particolare resistenza alle vibrazioni, resiste fino a temperature di circa 180°C (ben oltre quelle in gioco sulla trasmissione di un drone) e si asciuga in circa 10 minuti. Un importante accorgimento consiste nel tenere il motore con l’albero orientato verso il basso quando si va a montare il pignone per evitare che il frenafiletti possa colare all’interno del motore stesso e “bloccarlo”. Pochi minuti di pazienza, una verifica di rotazione fluida dell’albero ed è possibile rimontare tutto, questa volta in maniera solidale e affidabile nel tempo, con un costo esiguo.

Link correlati

In preparazione…

Modifica ingranaggi trasmissione drone Modifica ingranaggi trasmissione drone Modifica ingranaggi trasmissione drone Modifica ingranaggi trasmissione droneModifica trasmissione ingranaggi drone Modifica ingranaggi trasmissione drone Modifica ingranaggi trasmissione drone Modifica ingranaggi trasmissione drone

Stampa 3D: Stereolitografia SLA – Parte 4: Esempi ed applicazioni

Rubrica: Prototipazione rapida

Titolo o argomento: Stampa 3D di tipo Liquid-Based

Questo articolo segue da:
Vedi i “link correlati” riportati in basso

Applicazioni

La stampa 3d stereolitografica trova largo impiego nella realizzazione di anteprime di prodotti; nella realizzazione di modelli destinati a test di design, nonché analisi e verifica della funzionalità; per prototipi di strumenti e utensili; per la produzione di piccoli volumi di strumenti direttamente utilizzabili (Rapid Tooling) come ad esempio dime, maschere, fissaggi, sostegni, centraggi, chiavi speciali; modelli per fusione a cera persa, colata in sabbia e stampaggio.

Derby, il cane con le protesi stampate mediante stereolitografia

Grazie alla stampa 3d stereolitografica è possibile costruire persino protesi direttamente utilizzabili. Nei corridoi della tecnologia ha avuto un notevole rilievo la tenera storia che ha visto Derby, uno splendido Husky, dapprima impossibilitato nell’uso delle zampe anteriori e poi fortunatamente riabilitato grazie all’impiego di protesi studiate su misura per i suoi arti.

L’implementazione è cominciata con una accurata scansione 3d degli arti anteriori di Derby, questo ha permesso di studiare l’anatomia esatta delle sue zampe e disegnare al CAD una varietà di soluzioni che è stato possibile testare rapidamente, e con costi contenuti, grazie alla stampa 3d di ogni modello mediante stereolitografia.

Una volta ottenuto il modello che permetteva un appoggio corretto e indolore degli arti, si è provveduto ad ottimizzarne le restanti geometrie per garantire una corretta presa a terra, l’assenza di interferenze tra le due protesi durante i movimenti tipici del cane in fase di “passeggiatina, zompetti e corsa”, nonché la sicurezza di movimenti morbidi, intuitivi che non provocassero particolari difficoltà passando da superfici solide a terreni argillosi. Prima dell’incontro tra Derby e Tara Anderson, esperta di stampa 3d presso la 3D Systems, Derby poteva muoversi solo su superfici morbide e per tempi ridotti… ora corre fino a 4 chilometri al giorno : )

Prospettive Bioingegneristiche

Questo tipo di tecnologia si sta espandendo notevolmente anche nel settore delle protesi ortopediche per l’uomo e nel settore della tecnologia odontotecnica ove ad esempio si inizano a stampare in 3d maschere di foratura per l’implantologia di denti finti (quelli con innesto mediante vite in titanio, per intenderci) nelle relative ossa, mascellare e mandibolare. Interessante anche la prototipazione di organi e tessuti verso cui sta volgendo la ricerca scientifica e di cui parleremo meglio più avanti.

Link correlati

Stampa 3D: Stereolitografia SLA – Parte 1: Tecnica
Stampa 3D: Stereolitografia SLA – Parte 2: Fotopolimeri e Fotopolimerizzazione
Stampa 3D: Stereolitografia SLA – Parte 3: Pro e contro, R&D
Stampa 3D: Stereolitografia SLA – Parte 4: Esempi ed applicazioni

Images’s copyright: 3dsystems.com

Stampa 3D: Stereolitografia SLA – Parte 3: Pro e contro, R&D

Rubrica: Prototipazione rapida

Titolo o argomento: Stampa 3D di tipo Liquid-Based

Questo articolo segue da:
Vedi i “link correlati” riportati in basso

Pro e contro

A favore della prototipazione rapida mediante Stereolitografia SLA giocano fattori come la possibilità di lavorare in continuo, anche tutto il giorno, persino senza operatore. E’ possibile costruire prototipi i cui volumi vanno da un cubo di lato pari a 25 centimetri fino a parallelepipedi di circa 70 x 60 x 50 centimetri. Il livello di accuratezza della stampa SLA è molto buono e ne consente l’uso praticamente in tutti i campi tecnologici. La finitura delle superfici è tra le migliori in assoluto dell’intera gamma di tecnologie per la stampa 3d. Infine c’è un ampio range di materiali impiegabili in questa specifica tecnica di stampa che consente di generare modelli decisamente realistici e addirittura direttamente utilizzabili come ad esempio nel campo delle protesi.

D’altra parte la stampa stereolitografica richiede strutture di supporto. I modelli 3d che hanno sporgenze e incavi (sottosquadri) devono avere strutture di sostegno che vengono stampate assieme ai modelli stessi. Tali strutture devono poi essere rimosse e questo richiede un lavoro extra, con la conseguente perdita di tempo, nonché il rischio di danneggiamento del modello 3d appena realizzato. Nota finale, per garantire la corretta robustezza del pezzo che si va ad ottenere, è importante sottoporlo ad un trattamento finale di indurimento onde evitare possibili rotture.

Ricerca e sviluppo

La ricerca è orientata ad ottenere resine con caratteristiche meccaniche via via superiori, processi di stampa più rapidi, software che offrono più funzioni, una tecnologia mirata ad ottenere stampi a basso costo per materiali termoplastici quali polipropilene, nylon, ABS, polietilene e policarbonato, nonché per la produzione di maschere, dime, supporti, utensili, guide, centraggi e tutto ciò che occorre come rapido ed efficiente ausilio alla produzione (ovvero l’ambito definito Rapid Tooling).

Continua…

Link correlati

Stampa 3D: Stereolitografia SLA – Parte 1: Tecnica
Stampa 3D: Stereolitografia SLA – Parte 2: Fotopolimeri e Fotopolimerizzazione
Stampa 3D: Stereolitografia SLA – Parte 3: Pro e contro, R&D
Stampa 3D: Stereolitografia SLA – Parte 4: Esempi ed applicazioni

Image’s copyright: stratasys.com

Stampa 3D: Stereolitografia SLA – Parte 2: Fotopolimeri e Fotopolimerizzazione

Rubrica: Prototipazione rapida

Titolo o argomento: Stampa 3D di tipo Liquid-Based

Questo articolo segue da:
Vedi i “link correlati” riportati in basso

Fotopolimeri

Ci sono diversi tipi di resine fotosensibili (o fotopolimeri) che possono solidificare se esposte a radiazioni elettromagnetiche che vanno dalle lunghezze d’onda dei raggi gamma, raggi X, raggi UV, radiazioni visibili all’occhio umano o, addirittura, raggi di elettroni (EB). Nella stampa 3D la sorgente elettromagnetica più utilizzata è quella dei raggi UV. Le resine fotosensibili agli UV sono formulate da monomeri liquidi reattivi, da agenti indurenti (che catalizzano la reazione aumentandone opportunamente la velocità) e da opportune polveri, filler e additivi utili a modificare le proprietà delle resine stesse.

Fotopolimerizzazione

La fotopolimerizzazione consiste in un processo analogo a quello della polimerizzazione ma basato su una reazione fotochimica ottenuta mediante l’induzione di energia emessa da sorgenti di radiazione elettromagnetica (E=h·ν dove “h” è la costante di Planck e “ν” la frequenza della radiazione elettromagnetica) quali ad esempio i raggi UV. La polimerizzazione, nella fattispecie la fotopolimerizzazione, assembla piccole molecole, dette “monomeri”, in catene di molecole che si ripetono in sequenza, dette “polimeri”. La reazione chimica è di tipo esotermico, ovvero con emissione di calore ed è accelerata grazie all’impiego di un catalizzatore, solitamente un radicale libero, generato termicamente o fotochimicamente. I radicali liberi generati mediante il processo fotochimico si ottengono grazie ad un fotoiniziatore che reagisce con la radiazione attinica, in questo caso i fotoni della luce ultravioletta, ovvero quel tipo di radiazione in grado di agire chimicamente su diverse sostanze. La luce attinica, quindi, agisce sul fotoiniziatore producendo un radicale libero il quale catalizza il processo di polimerizzazione. Affinché questo abbia luogo correttamente le catene di polimeri dovranno essere saldamente formate in un reticolo stabile che eviti la redissoluzione in monomeri liquidi. Le strade percorribili sono due: una lunga esposizione, incompatibile con i tempi ed i costi di prototipazione e produzione, oppure un laser ad elevata potenza.

Continua…

Link correlati

Stampa 3D: Stereolitografia SLA – Parte 1: Tecnica
Stampa 3D: Stereolitografia SLA – Parte 2: Fotopolimeri e Fotopolimerizzazione
Stampa 3D: Stereolitografia SLA – Parte 3: Pro e contro, R&D
Stampa 3D: Stereolitografia SLA – Parte 4: Esempi ed applicazioni

Fotopolimerizzazione

La luce attinica, quindi, agisce sul fotoiniziatore producendo un
radicale libero il quale catalizza il processo di polimerizzazione.
Image’s copyright: en.wikipedia.org

Stampa 3D: Stereolitografia SLA – Parte 1: Tecnica

Rubrica: Prototipazione rapida

Titolo o argomento: Stampa 3D di tipo Liquid-Based

Tecnica

La Stereolitografia SLA (StereoLitographic Apparatus) è una tecnica di stampa 3D introdotta da 3D Systems nel 1988, essa permette di realizzare oggetti in plastica direttamente dai dati forniti dal file CAD e convertiti in un formato denominato STL (Stereolithographic file). Il processo inizia in una vasca nella quale viene immessa una resina liquida fotosensibile. All’interno della vasca è immerso un elevatore che, inizialmente, è  posto appena sotto il livello della resina fotosensibile ed è dotato di supporti atti a sostenere il pezzo che verrà realizzato.

L’operatore carica un file CAD che un sistema di traduzione converte in automatico in STL dopodiché l’unità centrale provvede a tagliare il modello 3D in sezioni (operazione di slicing) da 0,025mm fino ad un massimo di 0,5mm di spessore. Il computer controlla un sistema ottico basato su laser che va a polimerizzare, solidificando, uno strato di resina per volta; ogni strato corrisponde alla relativa sezione 2D in cui è stato suddiviso il modello. L’elevatore si abbassa di uno strato, ogni volta che una sezione 2D è stata ultimata, fino ad immergere l’intero prototipo al suo completamento. In questo modo c’è sempre uno strato di resina liquida pronta a polimerizzare nella parte superiore esposta al raggio laser.

Una lama, posta sulla superficie della resina, pulisce e riprepara lo strato successivo di resina in modo omogeneo per la polimerizzazione seguente (un po’ come se stendeste con una spatola il miele o una crema all’interno di una formina metallica per torte). Ora il laser può disegnare il nuovo strato. Al termine del processo il modello 3D fisico ottenuto viene estratto dalla vasca e sottoposto a pulizia dall’eccesso di polimeri.

I componenti principali dell’impianto sono: il computer (con il relativo software a corredo), l’unità centrale (controller), il pannello di controllo, il sistema laser (con la relativa ottica), la vasca, il sostegno elevatore (con i relativi supporti) e la lama di ripristino e omogeneizzazione dello strato superficiale.

Continua…

Video

Trovate un interessante video sulla stampa SLA professionale al seguente link:
https://www.youtube.com/watch?v=Gs5R3PHavSI

Link correlati

Stampa 3D: Stereolitografia SLA – Parte 1: Tecnica
Stampa 3D: Stereolitografia SLA – Parte 2: Fotopolimeri e Fotopolimerizzazione
Stampa 3D: Stereolitografia SLA – Parte 3: Pro e contro, R&D
Stampa 3D: Stereolitografia SLA – Parte 4: Esempi ed applicazioni

Passaggio laser su resina fotopolimerica

Osservando il bagno di resina fotopolimerica si notano i rapidi movimenti
del laser intento a polimerizzare il nuovo strato.
Image’s copyright: 3dsystems.com

Estrazione pezzo da fotopolimerizzazione resina - Stampa 3d SLA Stereolitografica

Il sollevatore estrae il pezzo fotopolimerizzato dal bagno di resina.
Image’s copyright: 3dsystems.com

Trattamenti di finitura superficiale: Micropallinatura

Rubrica: Trattamenti di finitura superficiale

Titolo o argomento: Migliorare le caratteristiche delle superfici dei metalli

Micropallinatura

La pallinatura dell’ acciaio (shot peening) consiste in un trattamento superficiale realizzato su componenti meccanici al fine di migliorarne le prestazioni durante le sollecitazioni. Ambiti tecnologici dove la pallinatura risulta essenziale sono rappresentati dall’aerospaziale e dal settore automobilistico. In genere la pallinatura dell’acciaio rappresenta l’ultimo dei trattamenti eseguiti, dopo quelli di natura termochimica come la nitrurazione e la cementificazione. La pallinatura viene eseguita a freddo, mediante le pallinatrici. Queste macchine indirizzano un getto molto violento di cilindretti o pallini sferici di ghisa, acciaio, vetro o ceramica contro la superficie dell’oggetto che subisce così un martellamento continuo. Il processo causa una deformazione plastica di qualche decimo di millimetro all’oggetto che ne migliora sensibilmnte la resistenza a fatica. La pallinatura dell’acciaio ricorda molto la sabbiatura per il suo svolgimento, ma la finalità è molto piu verosimile a quella della rollatura in quanto si punta più sulla malleabilità che sulla corrosione. Il risultato finale della pallinatura dell’acciaio è dato dalla durezza della graniglia utilizzata, dalla velocità e dalla portata del getto, dall’intensità e dalla distanza del pezzo, ma anche dalla dimensione dei pallini. Un effetto secondario ottenuto dalla pallinatura dell’acciaio è una forma di satinatura del materiale che ha subito il trattamento, a causa delle microcavità generate che riducono la luce riflessa sul materiale.

Pallinatura superficiale

La palllinatura superficiale è da internersi a tutti gli effetti una finitura superficiale simile alla sabbiatura con la differenza che la superficie si presenta lucida e uniforme. E’ una lavorazione molto apprezzata dove si è reso necessario uniformare la superficie del pezzo o nascondere difetti come graffi o ammaccature derivanti da fasi produttive precedenti a patto che non ci siano specifiche restrittive sulla rugosità superficiale. Inoltre è un’ottima soluzione per la preparazione della superficie a successive fasi di lavoro come la verniciatura o la nichelatura.

Shot Peening

Il principio fondamentale della  pallinatura controllata (shot peening) consiste nel fare in modo che negli strati superficiali la trazione generata dai carichi esterni venga ridotta, sovrapponendole uno strato di compressione “artificiale” generato non da carichi esterni quanto dal trattamento stesso. La somma di trazione e compressione fornisce come risultato uno stato di sforzo superficiale più favorevole. Questo tipo di lavorazione crea una superficie forte ovvero quella che possiede caratteristiche meccaniche superiori rispetto al nucleo in quanto sede di sforzi di compressione che ostacolano la propagazione delle microcricche di fatica. Tra i trattamenti di finitura superficiale, la pallinatura controllata è spesso utilizzata per incrementare la resistenza a fatica e la durezza superficiale degli elementi strutturali ed è a volte preferibile ai più tradizionali trattamenti termochimici per la maggiore versatilità, il migliore impatto ambientale ed il costo relativamente limitato.

Per cortesia di
S.b.a. Finitura Metalli
sbatech.it

Video

Trovate un video esplicativo del processo di micropallinatura al seguente link:
https://www.youtube.com/watch?time_continue=63&v=b-T5i9IrOx0

Link correlati

Introduzione ai trattamenti termici degli acciai
Introduzione ai trattamenti superficiali
Introduzione ai trattamenti di finitura superficiale

Micropallinatura

Image’s copyright: OSK-Kiefer GmbH

Trattamenti di finitura superficiale: Vibrofinitura

Rubrica: Trattamenti di finitura superficiale

Titolo o argomento: Migliorare le caratteristiche delle superfici dei metalli

Vibrofinitura
(o burattatura)

La vibrofinitura (o burattatura, barilatura o, più modernamente, il “mass-metal finishing”) è il sistema utilizzato per il miglioramento delle superfici: sbavatura, levigatura, lucidatura, decappaggio, passivazione, ecc.. La vibrofinitura o burattatura può essere definita come l’azione prodotta dal movimento relativo fra differenti elementi di una massa. La massa è costituita da pezzi alla rinfusa da trattare (media o chips) più la soluzione liquida di un prodotto chimico. L’energia per il movimento relativo viene fornita da un impianto o una macchina. Ci si trova, quindi, in presenza di due forze, quella della macchina e quella dell’abrasivo (e del prodotto chimico).

Macchina

La macchina o l’impianto fornisce energia al sistema e può essere un tamburo rotante oppure una vasca vibrante o, ancora, un piatto in rotazione rapida, un mandrino di una giostra rotante.

L’abrasivo ed il prodotto chimico

L’abrasivo assume la veste di utensile sui pezzi in fase di trattamento, il prodotto chimico favorisce il contatto tra pezzo e media, agendo da ammortizzatore, migliorando la lubrificazione o interagendo chimicamente in funzione delle sue caratteristiche.

Particolarità

La burattatura è una lavorazione utilizzata per l’asportazione di residui del substrato in particolare bava, dovuti alla lavorazione come stampaggio, tranciatura e pressofusione. Particolarmente adatta per dare una finitura superficiale ad un numero elevato di pezzi, di piccole dimensioni. La burattatura viene eseguita mediante la rotazione dei particolari da trattare in un “rotobarile” (la finitura superficiale può essere implementata con l’aggiunta di abrasivi ceramici o di altre tipologie), molto usata anche la “autoburattatura” che consiste nella finitura superficiale ottenuta dal contatto pezzo contro pezzo. Incrementando o diminuendo la velocità di rotazione è possibile trattare diverse tipologie di metalli ottenendo altrettante diverse tipologie di finitura. In aggiunta si possono aggiungere liquidi nel processo che agevolano la lavorazione o prevengono eventuali ossidazioni del materiale trattato.

Gli abrasivi

La vibrofinitura è un sistema di finitura superficiale che sfrutta l’’azione prodotta dal movimento a vibrazione per compiere una lavorazione all’interno di una vasca. L’azione di finitura sui pezzi può essere accentuata e migliorata attraverso l’utilizzo di mezzi di contrasto chiamati granuli e con l’ausilio di soluzioni liquide e paste. I granuli sono gli elementi che lavorano all’interno di una macchina di vibrofinitura ed hanno la funzione di utensile (a contatto con il pezzo da trattare svolgono un’azione di sbavatura, levigatura o lucidatura). A seconda della loro composizione possono avere un grado di abrasione più o meno alto o nullo. Gli elementi che caratterizzano un granulo sono la composizione, la forma e la dimensione. La principale suddivisione viene fatta in base all’elemento che compone il granulo: ceramico, plastico, metallico o vegetale.

Granuli ceramici: prodotti a legante ceramico, con capacità di asportazione per rottura o abrasione.

Granuli plastici: prodotti a legante plastico, con capacità di asportazione per rottura o abrasione.

Granuli metallici: prodotti metallici ideali per brillantatura.

Granuli vegetali: prodotti di origine vegetale specifici per operazioni diasciugatura e di lucidatura.

Vibrolucidatura

La vibrolucidatura consiste in un particolare processo di finitura, adatto alle minuterie, mediante il quale i particalari da trattare vengono lavorati in vibratori con speciali abrasivi porcellanati o inox uniti a additivi chimici specifici. Il risultato finale che si ottiene è una sbavatura-lucidatura dei particolari paragonabile alla “lucidatura a specchio” consentendo di raggiungere una rugosità superficiale estremamente bassa. Questo particolare processo richiede la massima precisione e conoscenza del processo di lavorazione.

Vibrosbavatura

La vibrosbavatura è un processo di finitura superficiale che consiste nell’asportazione di bave e imperfezioni superficiali tramite la vibrofinitura dei particolari  con abrasivo ceramico. Questo processo permette la sbavatura di grandi quantità di materiale con costi contenuti ed ottenendo una finitura superficiale omogenea.

Per cortesia di
S.b.a. Finitura Metalli
sbatech.it

Link correlati

Introduzione ai trattamenti termici degli acciai
Introduzione ai trattamenti superficiali
Introduzione ai trattamenti di finitura superficiale

Vibrofinitura

Image’s copyright: bvproducts.com.au